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Understanding energy loss in large-angle scattering of keV electrons from Ar and Ne
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We present measurements of the spectra of electrons with energy between 0.6 and 2.25 keV elastically and
inelastically scattered from Ar and Ne over large angles (from 3◦ to 135◦). The intensity of the first loss feature
[np → (n + 1)s], relative to that of the elastic peak, was determined and compared with the results of relativistic
distorted-wave calculations (for the energy loss part) and a relativistic optical potential method (for the elastic
peak). Good agreement was found. The distorted-wave calculations are compared with first Born calculations.
At small angles, both theories coincide and estimates of the optical oscillator strength are obtained. However, at
large angles, the first Born approximation predicts negligible intensity, in strong contrast to the distorted-wave
theory and the experimental data. The implications of these results for the interpretation of measurements of the
generalized oscillator strength are discussed.
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I. INTRODUCTION

Electron scattering from noble gases has been an active
field of research for many years. Initially, almost all studies
of inelastic differential cross sections (DCS) were done at
relatively low momentum transfer. For the case of small-angle
deflections (<5◦) of electrons with incoming energy E0 of
the order of 1 keV, the loss spectrum can be described in the
first Born approximation. Here, the momentum transfer can
be accommodated by electronic excitation, and the interaction
of the scattered electron with the nucleus can often be neglected
when describing the energy loss spectrum.

In the first Born approximation, the outcome is then a
function of the transferred momentum K only; furthermore, to
stress the link with the optical oscillator strength, the results are
usually plotted in terms of f (E,K), the generalized oscillator
strength (GOS) [1]:

f (E,K) = E

2

k0

k1
K2 dσ

d�
. (1)

Here E is the excitation energy and k0 and k1 are the
momentum of the electron before and after the collision.

About 40 years ago, Opal and Beaty experimentally studied
electron scattering from He over larger angles [2]. This
study concluded that the inelastic differential cross section
decreases more slowly with increasing scattering angle θ than
that predicted by the first Born approximation. At about the
same time, Hidalgo and Geltman published, also for the case
of He, the first attempt to include the interaction with the
nucleus in the inelastic cross-section calculation [3]. Their
theoretical approach also indicated enhanced intensity at large
scattering angles compared to that predicted by the first Born
approximation.

Also, at about the same time, electron scattering from Hg
was studied [4,5]. Slightly different shapes of the GOS were
obtained, depending on incoming energy E0, particularly for
intermediate K values. This was also attributed to the failure
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of the first Born approximation but, at that time, alternative
theories were not available.

More recently, this problem has attracted attention in the
context of a large deviation observed between the intensity of
the loss spectra of N2 obtained by inelastic x-ray scattering and
inelastic electron scattering [6]. In the first Born approxima-
tion, the x-ray and electron-scattering results should coincide
(except for a normalization constant). For small momentum
transfer collisions, this was indeed found to be the case, but
huge deviations were seen at large momentum transfer. This
was explained by assuming that the first Born approximation
describes the x-ray data well, but fails for electrons.

In recent years, the experimental detection efficiency has
improved due to the availability of two-dimensional detectors.
This means that there is sufficient signal to obtain spectra
at much larger scattering angles θ , i.e., higher K values. At
these K values, the intensity predicted within a first Born
approximation treatment is essentially zero. However, the
experiment shows a clear low-intensity signal, which changes
in nontrivial ways with changing scattering conditions, as was
shown in the case of Xe, Ar, and CH4 in Refs. [7,8]. Theoretical
understanding of these spectra was limited. Here, we address
this issue for the case of large-angle scattering of keV electrons
from Ar and Ne.

II. EXPERIMENTAL DETAILS

Experiments were done at the Australian National Uni-
versity (ANU) at scattering angles of 45◦, 90◦, and 135◦
with an energy resolution of 0.3 eV. The experimental setup
was described in detail in Ref. [9]. In order to link these
measurements with the existing GOS literature, restricted
to much smaller θ values, the McVahres spectrometer of
McMaster University was used, which is described in detail
in Ref. [10]. In this spectrometer, the scattering angle can be
varied continuously, and data were taken at 1 and 2.25 keV
for scattering angles between 3◦ and 36◦. Its energy resolution
of 0.6 eV was still good enough to determine the area of the
combined 3p to 4s transitions of Ar and the 2p to 3s transitions
of Ne.
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In these experiments, we measure very weak signals in
the presence of the relatively strong elastic peak. It is, thus,
imperative to make sure that the count rate due to instrumental
artifacts is minimized. Care is taken that very few of the
electrons that scatter from the last aperture of the collimator
or from the gas-jet orifice can reach the analyzer.

In principle, multiple scattering with different atoms could
occur in the interaction region. The measured intensity at
nonzero energy loss could then be due to elastic scattering
from one atom and inelastic excitation of another atom. In this
case, the observed loss intensity would increase with the square
of the gas pressure, whereas the elastic peak itself (mainly due
to single scattering) would increase only linearly with gas pres-
sure. Thus, the inelastic to elastic signal ratio would increase
linearly with pressure. In reality, changing the gas pressure by
a factor of 6 or so (from 0.5 × 10−6 to 3 × 10−6 torr) was found
to change this ratio by at most 10%. Thus, multiple scattering
events contribute only in a very minor way to the data.

III. THEORY

In this paper, the inelastic differential cross sections
were calculated using the relativistic distorted-wave (RDW)
method, while the elastic cross sections were determined using
a relativistic optical potential (ROP) method.

The RDW method was originally developed by Zuo
et al. [11] and applied to the excitation of the 6s[1/2]o1 and
6s[3/2]o1 states of xenon between 30 and 80 eV. In this
paper, it was also used used to calculate the orientation and
alignment parameters associated with the transition from the
ground state to the above excited states. The RDW method
was subsequently used in a similar manner in the treatment of
the alkaline earths (Srivastava et al. [12,13]) and alkali-metal
atoms (Zeman et al. [14,15]) again in the low-energy range up
to a few hundred electronvolts.

The ROP method was recently developed by Chen et al. [16]
and used to calculate total and differential cross sections as
well as spin-polarization parameters for relatively low-energy
electrons and positrons incident upon the heavy noble gases
(see [17]).

Although both of these theories have already been pub-
lished, this is the first time they have been applied to atomic
scattering problems at these relatively high incident electron
energies. Consequently, for the benefit of researchers working
at these high energies, we will now provide a very brief
overview of these two methods. We will also discuss a few
of the modifications to these methods that were necessary to
carry out this work at relatively high incident electron energies.

A. The RDW Method

The original version of the RDW method required that the
ground- and excited-state wave functions be determined in
a single multiconfiguration Dirac-Fock (MCDF) calculation.
However, a modified version of the RDW method has been
used here that allows for the ground- and excited-state wave
functions to be determined in separate MCDF calculations,
thereby giving a more accurate representation of both atomic
states. Furthermore, the numerics of this new code have been
modified so that it can accommodate incident electron energies

greater than 2 keV and incident electron orbital angular
momentum greater than 100 a.u.

If we denote (in intermediate coupling notation) the excited
states of a noble gas by n′κ ′[K]PJ , then the total differential
cross section σJK

n′κ ′ (k̂b) for the excitation of this state from the
ground state is given by

σJK
n′κ ′ (k̂b) = 1

2

J∑
M=−J

∑
µaµb

f JK ∗
n′κ ′ (M,µa,µb; k̂b)

× f JK
n′κ ′ (M,µa,µb; k̂b), (2)

where f JK
n′κ ′ (M,µa,µb; k̂b) is the scattering amplitude which, in

turn, can be expressed in terms of the corresponding T -matrix
element by

f JK
n′κ ′ (M,µa,µb; k̂b) = (2π )2

(
kb

ka

)1
2

T JK
n′κ ′ (M,µa,µb; k̂b).

(3)

In these equations, J and M are the total angular-momentum
quantum numbers of the excited state, P is the parity of
the state, µa,µb are the magnetic spin projection quantum
numbers of the incident and outgoing electrons, and ka,kb

specify the wave vectors of the incoming and outgoing
electrons. Finally, the quantum number κ is defined in terms
of the orbital and total angular-momentum quantums (l,j ) of
an electron by κ = − l − 1 for j = l + 1

2 while κ = l for
j = l − 1

2 .
The T -matrix elements in Eq. (3) can be expressed in terms

of the relativistic distorted waves according to

T JK
n′κ ′ (M,µa,µb; k̂b) = 〈

φb

(
n′κ ′[K]PJ

)
F−

bµb
(x,σ )|V − U|

×A {φa(00) F+
aµa

(x,σ )}〉. (4)

Here, φa(00) is the ground-state Dirac-Fock wave function
with J = M = 0 as determined in a separate Dirac-Fock cal-
culation using just a single configuration, while φb(n′κ ′[K]PJ )
is an excited-state wave function with total angular-momentum
quantum numbers J and M and is determined in a multiconfig-
uration procedure. Furthermore, A is the antisymmetrization
operator, F+

aµa
(x,σ ) and F+

bµb
(x,σ ) are relativistic distorted

waves, V is the total interaction potential between the incident
electron and the atom, while U is the so-called distortion
potential and (x,σ ) are the space and spin coordinates of the
incident electron.

We are concerned here with the excitation of the outermost
np̄ (l = 1,j = 1

2 ) and np (l = 1,j = 3
2 ) subshells of argon

(n = 3) and neon (n = 2). Whenever different excited atomic
configurations have the same total angular momentum J ,
the wave function φb(n′κ ′ [K]PJ ) for an arbitrary excited
state is then formed by taking a linear combination of these
configurations. Thus, the wave function φb(n′κ ′ [K]PJ ) can be
expressed according to the J lK coupling scheme as

φb

(
n′κ ′ [K]PJ

) = 1√
N !

∑
κκ ′′

cκκ ′′ (n′κ ′JK)

×
∑
mm′

C(jj ′J ; m m′M) det{(core); n′κ ′m′},

(5)
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where ακκ ′ represents all additional quantum numbers required
to uniquely identify the state, while the C(j j ′ J ; m m′ M) are
the usual Clebsch-Gordan coefficients and the expansion coef-
ficients cκκ ′′ (n′κ ′JK) are obtained from a multiconfiguration
Dirac-Fock calculation. Core refers to the remaining electrons
listed in their standard order.

The interaction potential between the incident electron and
the atom in Eq. (4) is given by

V (x) = − Z

x
+

N∑
i=1

1

|r i − x| , (6)

where the sum is over the atomic electrons while the distortion
potential U is chosen to be the static potential of the
excited state. Furthermore, the relativistic distorted waves
F+

aµa
(x,σ ) and F+

bµb
(x,σ ) can be expanded in partial waves

according to

F±
ch,µ(x,σ ) = 1

(2π )
3
2

∑
κm

e±iηκ aµ
κm(k̂)

1

x

(
fκ (x) χκm(x̂,σ )

igκ (x)χ−κm(x̂,σ )

)
,

(7)

where

aµ
κm = 4πil

(
Ech + mc2

2Ech

) 1
2 ∑

ml

C(l 1
2 j ; ml µm) Y ∗

lml
(k̂ch).

(8)

Here, ch and µ represent the scattering channel (a or b) and the
spin orientation of the channel, respectively, while Ech is the
total energy of the incident or outgoing particle including its
rest mass in the channel ch, ηκ is the phase shift in the channel,
and the χ±κm(x̂,σ ) are the usual Pauli spinors that couple the
orbital and spin angular momentum.

The large and small components of the radial distorted
waves fκ̄ (x) and gκ̄ (x) in each channel are solutions of the
following pair of coupled integrodifferential equations:(

d

dx
+ κ̄

x

)
fκ̄ (x) − e2

h̄c
(2mc2 − U + ε̄) gκ̄ (x)

− 1

h̄c
WQ(κ̄; x) = 0, (9a)

(
d

dx
− κ̄

x

)
gκ̄ (x) + e2

h̄c
( − U + ε̄) fκ̄ (x)

+ 1

h̄c
WP (κ̄; x) = 0, (9b)

where (ε̄,κ̄) is either (εa,κa) or (εb,κb), U is the distortion
potential, the WP,Q are nonlocal exchange potentials, and
ε̄ = E − mc2 is the energy of the incident or outgoing electron,
excluding its rest mass, in that channel. The Dirac-Fock
wave functions of the target atom were determined using
the MCDF program of Grant et al. [18]. The wave functions
for the two 4s J = 1 states of argon are given by the linear
combinations

φ
(
4s [1/2]0

1

) = c11 φ(α3p̄4s 1M) + c12 φ(α3p34s 1M) (10a)

and

φ
(
4s [3/2]0

1

) = c21 φ(α3p̄4s 1M) + c22 φ(α3p34s 1M), (10b)

where the coefficients c11 = c22 = 0.905 19 and c12 = −c21 =
−0.425 01 are obtained from a multiconfiguration Dirac-
Fock calculation. For neon, we obtain c11 = c22 = 0.801 28
and c12 = −c21 = −0.598 30 for the corresponding 3s wave
function.

B. The ROP Method

The elastic differential cross sections for the ground states
of argon and neon were calculated using the ROP method
of Chen et al. ([16], hereafter referred to as I). Here, the
optical potential is both complex and ab initio, the real part of
which Upol describes the polarization of the target atom by the
incident electron while the imaginary part Uabs describes the
loss of incident flux into excitation and ionization channels. As
in I, we use our local polarized-orbital polarization potential,
containing both static and dynamic terms, for Upol. The precise
form of these potentials is discussed in McEachran and Stauffer
([19,20] and references therein). The nonlocal imaginary
absorption potential was determined as an expansion over the
inelastic channels of the target atom. These inelastic channels
included both excitation of the higher lying bound states as
well as single ionization of the target as given by Eq. (21b)
of I. Once again, the Dirac-Fock wave functions of the target
atom were determined using the MCDF program of Grant
et al. [18].

The ground-state wave functions of argon and neon were
both determined in a single configuration calculation and are
the same as those used in the RDW method. For the excited
bound states of argon, we included those states where one of
the electrons in the outer 3p̄ or 3p valence shells was excited
to a higher-lying valence shell with n = 4 or 5. In particular,
the following 14 bound states were included: [3p̄3p43d̄]J=1,
[3p̄23p33d̄]J=1,3, [3p̄3p43d]J=3, [3p̄23p33d]J=1,3,
[3p̄3p44s]J=1, [3p̄23p34s]J=1, [3p̄3p44p̄]J=0,
[3p̄23p34p̄]J=2, [3p̄3p44p]J=2, [3p̄23p34p]J=0,2,
[3p̄3p45s]J=1, [3p̄23p35s]J=1, [3p̄3p45p̄]J=0,
[3p̄23p35p]J=2. Similarly, for Ne, the corresponding 14 bound
states were included, i.e., in the above list as 4s → 3s, 5s →
4s, and 3p,3p̄ → 2p,2p̄.

The ionized states are represented as a continuum wave
function, denoted by εκ , where ε represents the energy of the
ejected electron. In this case, we included 18 states where
either a 3p̄, 3p, or 3s electron was ionized for Ar (or a
2p̄, 2p, or 2s electron for Ne). In particular, the following
configurations were included: εd̄ [1/2]o1, εd [3/2]o1, εd̄ [3/2]o1,
εd [7/2]o3, εd̄ [5/2]o3, εd [5/2]o3, εs [3/2]o1, εs [1/2]o1,
εp [1/2]0, εp̄ [1/2]0, εp [5/2]2, εp̄ [3/2]2, εp [3/2]2, when a
3p̄ or 3p (2p̄ or 2p) electron is ionized plus the configurations
εs [1/2]0, εp [3/2]o1, εp̄ [1/2]o1, εd [5/2]2, εd̄ [3/2]2, when
the 3s (2s) electron is ionized. The continuum waves are
solutions of Eqs. (60a) and (50b) of I with the required
potential being given by Eqs. (53a) and (53b) of I when a
3p̄ or 3p (2p̄ or 2p) electron is ionized, and by Eq. (1) of
Ref. [21] when a 3s (2s) electron is ionized.

In the incident channel, denoted by �0, we now let the
wave number of the incident electron be k0 and its angular-
momentum quantum numbers be (l2,j2)κ2. The radial integral
equations for the large and small components of the scattering
wave functions F0(x) and G0(x) can be expressed in matrix
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form as(
F0(x)
G0(x)

)
=

(
v1(k0x)

v2(k0x)

)
+ 1

k0

∫ x

0
dr GP

�0
(x,r)

[
U (r)

(
F0(r)

G0(r)

)

−
(

WP (κ2; r)

WQ(κ2; r)

)
− i Uabs(r)

(
F0(r)

G0(r)

)]
, (11)

where the local potential U (r) is given by the sum of the
ground-state static potential U00(r) and the local polarization
potential, while WP (κ2; r) and WQ(κ2; r) are the large and
small components of the exchange terms. The Green’s function
GP

�0
(x,r) can be expressed in terms of Riccati-Bessel and

Riccati-Neumann functions [see Eq. (23) of I for details].
We note that the large and small components of the

scattering wave function are both complex functions and,
hence, Eq. (11) represents four coupled real equations for the
real and imaginary parts of these functions. Equation (11) is
solved iteratively and the corresponding complex phase shifts
δ±
κ2

are determined. From these complex phase shifts, the direct
and spin-flip scattering amplitudes can be calculated in terms
of the T -matrix elements according to

f (θ ) = 1

k0

∞∑
l2=0

[
(l2 + 1)T +

l2
(k0) + l2T

−
l2

(k0)
]
Pl2 (cos θ ) (12a)

and

g(θ ) = 1

k0

∞∑
l2=0

[
T −

l2
(k0) − T +

l2
(k0)

]
P 1

l2
(cos θ ), (12b)

where Pl2 (cos θ ) and P 1
l2

(cos θ ) are the Legendre and associ-
ated Legendre polynomials, and

T ±
l2

(k0) = 1

i

{
exp

[
2iδ±

l2
(k0)

] − 1
}
. (13)

Here, T +
l2

is the T -matrix element corresponding to spin-up
(κ2 < 0, j2 = l2 + 1

2 ), while T −
l2

corresponds to spin-down
(κ2 > 0, j2 = l2 − 1

2 ). In terms of these scattering amplitudes,
the elastic differential cross section is given by

dσ

d�
(θ,φ) = |f (θ )|2 + |g(θ )|2. (14)

C. Comparison of Present Theory with some Published Results

Often, experimental results are presented in the form of a
GOS measurement (see, e.g., [22–26] and references therein).
In order to facilitate the comparison with such work, we
calculated for our RDW calculations the corresponding GOS
using Eq. (1). Note that, in the first Born approximation,
the DCS (and the GOS) depends on |K | only and, hence,
measurements and theories obtained at different energies E0

can be compared conveniently. For the RDW calculations, this
is not the case, and we obtain different GOS curves for different
E0 values.

As an example, the results of our calculations for the
Ar 4s[3/2]o1 and 4s[1/2]o1 transitions are plotted in the left
panel of Fig. 1 together with recently published experimental
data [22,24]. Overall agreement between our theory and
published data is good. Extrapolating to K = 0, we obtain
from our calculation an optical oscillator strength of 0.0738
for the Ar 4s[3/2]o1 transition and 0.223 for the Ar 4s[1/2]o1

transition. The first value (0.0738) is somewhat larger than
the recommended value of 0.060 based on a recent literature
survey [27], but the second value (0.223) is in good agreement
with their recommended value of 0.233.

For K2 < 1 a.u., there is good agreement between the GOS
obtained from the first Born approximation and from the RDW
theory and the experimental data. For somewhat larger K

values (1 < K2 < 10), the RDW theory results in larger GOS
values than the first Born approximation, as is shown in Fig. 1
for the case of E0 = 2500 eV. These deviations increase for
calculations with smaller E0 values. The raw experimental data
do not follow either of the first Born or RDW theories closely.
In this intermediate K region (1 < K2 < 10), the experimental
data are influenced by the limited angular resolution due to the
steep decline of the GOS with increasing K . For K2 > 10 a.u.,
the GOS calculated in the first Born approximation drops
rapidly by orders of magnitude, whereas the RDW values vary
much less with increasing K . Also, the sharp cusps seen in the
first Born theory are severely damped in the RDW calculations.

The right panels of Fig. 1 show a similar comparison for the
case of Ne, using experimental data of Cheng et al. [23] (top)
and Suzuki et al. [25] (bottom). Both the theory as well as the
experimental results of Suzuki et al. show a gradual decrease
in intensity with increasing E0 values (from 300 to 500 eV)
near K2 = 4 a.u., but the calculated intensity near K2 = 4 a.u.
is somewhat larger than that obtained experimentally by
Suzuki et al. The high-energy (2500 eV) data of Cheng
et al. [23] deviate even more strongly from the RDW theory,
and the observed intensity near K2 = 4 is almost an order
of magnitude higher than the calculated intensity. The RDW
theory deviates at 2500 eV and K2 = 4 a.u. only modestly from
the first Born approximation, but both the RDW and the first
Born theories deviate substantially from the data published by
Cheng et al..

Extrapolating to K = 0, we obtain (based on the 2.5 keV
calculation) an optical oscillator strength of 0.0139 for the Ne
3s[3/2]o1 transition and 0.129 for the Ne 3s[1/2]o1 transition.
The first value is in range with other recent experiments and
calculations, as summarized by Ref. [28], where values vary
from 0.0102 to 0.016. The second value is somewhat lower
than the values reported in Ref. [28], which range from 0.144
to 0.168.

In this paper, we report experimental measurements with
K2 values up to 500 a.u. (E0 = 2000 eV and θ =135◦). Under
these conditions, the GOS values predicted by the first Born
approximation are several orders of magnitude less than those
obtained by RDW calculations. At larger K values, the RDW
theory does not vary that dramatically with K , and limited
angular resolution will not affect the data. The first Born
theory differs here by orders of magnitude from the RDW
calculations, and the E0 dependence of the RDW calculations
is substantial. For K2 > 10 a.u., an experiment should be able
to clearly distinguish between the first Born and RDW theories.
This is the main subject of this paper.

Experimentally, our loss spectra are on a relative scale. To
obtain the DCS for the excited states on an absolute scale,
we rely on matching the measured elastic peak intensity
to its calculated DCS. The theory for the elastic DCS is
well developed. In Fig. 2, we compare, for Ar, the elastic
DCS obtained by the ROP method [16] and the ELSEPA
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FIG. 1. (Color online) Upper panels: A comparison of our calculated GOS [as a function of K2, in atomic units (a..u.)] with the experimental
results for E0 = 2500 eV. Left panel: Ar theory compared with experimental data of L.-F Zhu et al. [22]. Right panel: Ne theory compared
with experimental results of Cheng et al. [23]. Lower left panel: a comparison of the RDW theory for Ar with the GOS obtained by Fan and
Leung for the combined 4s[3/2]0

1 and 4s[1/2]0
1 transitions [24]. Here we show the results of the RDW method at E0 = 2500 and 600 eV to

illustrate its energy dependence. The result of the first Born approximation is independent of E0. Lower right panel: A comparison of the 300
and 500 eV Ne data of Suzuki et al. [25] with the first Born and RDW theories.

package [29,30]. The latter case uses an optical potential
with an adjustable absorption-potential strength. For the
calculation shown here, we use the recommended value
of 2 for this parameter. In contrast, the ROP method is
ab initio. The overall agreement between both theories for
large scattering angles is of the order of 15%. Note that the
DCS for E0 = 2 keV decreases monotonically with increasing
angle, whereas at 600 eV, the elastic DCS has a minimum
near 100◦.

IV. EXPERIMENTAL RESULTS

Spectra obtained for 1 keV electrons scattered at 45◦,
90◦, and 135◦ are shown in the upper panels of Fig. 3.
The spectra are normalized in such a way that the elastic
peaks (not shown) have equal area. For Ar, there are discrete
peaks at energy losses somewhat smaller than the Ar 3p

binding energy (15.8 eV) and the Ar 3s binding energy

(29.2 eV). These states are well known from low momentum
transfer measurements (see, e.g., [22,26]). The first peak, near
11.75 eV, is due to the combined 3p→4s (J = 1) transitions,
i.e., the 4s[3/2]o1 and 4s[1/2]o1 transitions. The second peak
near 13.5 eV is primarily due to five (J = 0 and J = 2)
3p→4p transitions. Changing the scattering angle affects the
relative intensity of the different components. However, the
overall loss intensity, normalized to the elastic peak, is not a
dramatic function of the scattering angle.

For spectra taken from Ne under these conditions, the first
peak near 16.8 eV is due to 2p→3s (J = 1) transitions
(3s[3/2]o1 and 3s[1/2]o1). The peak near 18.7 eV is due to
J = 0 and J = 2 2p→3p transitions. Again, the ratio of
the combined 2p→3s to the combined 2p→3p distribution
changes significantly when one changes the scattering angle.

This is different from the situation when E0 is changed, as
is shown in the lower panel of Fig. 3. Again, the spectra are
plotted normalized to equal elastic peak intensity. Now, for

022707-5



VOS, MCEACHRAN, COOPER, AND HITCHCOCK PHYSICAL REVIEW A 83, 022707 (2011)

FIG. 2. (Color online) A comparison of the elastic cross section
(in atomic units) as calculated using the ROP method [16] (thick
lines) and the ELSEPA package with an optical potential as described
by Salvat [29] (thin lines) for the case of 0.6, 1, and 2 keV electrons
scattering from Ar. For Ne, the level of agreement between both
theories is comparable to that of Ar.

both Ar and Ne, the intensity of the loss features decreases
roughly as 1/E0, but the shape of the spectra is less affected.

We will not discuss any further the Ar 3s and Ne 2s

excitation part of the spectra in this paper. However, note
that the relative intensity of the different components, and
most likely their line shapes, are different under these high
momentum transfer conditions from those observed by Zhu
et al. [31]. For example, in Fig. 3, the 3s4s[1S0] state at an
energy loss of ≈ 25.3 eV is among the strongest excitations
related to the 3s electrons, whereas in the lower momentum
transfer case measured by Zhu, this peak is relatively weak.

For the quantitative analysis, we focus mainly on the Ar
3p → 4s and Ne 2p → 3s features. They are well isolated
from other features, and their areas can thus be determined in
a straightforward way. In Fig. 4, we plot the intensity of these
features divided by the corresponding elastic peak intensity.
Note that the elastic DCS changes dramatically with θ and in
different ways for the three energies used. The elastic DCS (see
Fig. 2) at 600 eV has a clear minimum near 100◦, whereas, for
the 2 keV case, the elastic DCS decreases monotonically with
increasing θ . The normalized intensity of the Ar 3p → 4s and
Ne 2p → 3s transitions varies much less with the scattering
angle than the elastic DCS, and in a uniform way for the three
energies shown. Somewhat surprisingly, the relative intensity

FIG. 3. (Color online) Measured differential energy loss spectra for electron scattering from Ar (left panels) and Ne (right panels). The
segments of the loss spectrum shown are related to the binding energies of the outermost s and p electrons. The top panel shows spectra for
E0 = 1 keV and scattering angles of 45◦, 90◦, and 135◦. The lower panels show spectra for a scattering angle of 90◦ and E0 values as indicated.
In all cases, the spectra are normalized to an equal area of the elastic peak (not shown).

022707-6



UNDERSTANDING ENERGY LOSS IN LARGE-ANGLE . . . PHYSICAL REVIEW A 83, 022707 (2011)

FIG. 4. (Color online) Top left panel: The ratio of the sum of the 4s[3/2]0
1 and 4s[1/2]0

1 intensities and the elastic peak intensity for
E0 = 0.6 keV (theory: short dashed line; ANU experiment: open circle), E0 = 1 keV (theory: full line; ANU experiment: open square;
McMaster experiment: inverted filled triangle), and E0 = 2 keV (theory: long dash-dotted line; ANU experiment: open diamond). Open
symbols refer to measurements with a gas pressure in the vacuum chamber of 0.5 − 1 × 10−6 torr, and the corresponding filled symbols refer
to measurements at a pressure of ≈3 × 10−6 torr. The right panel shows the corresponding results for the sum of the 3s[3/2]0

1 and 3s[1/2]0
1

transitions of Ne at E0 =0.6, 1, and 2.25 keV. The lower panels show the theory and the McMaster results for smaller θ values and E0 =1
(filled triangle) and 2.25 keV (inverted filled triangle).

increases for θ values above 30◦, in particular for Ar. Thus,
the normalized intensity of the combined Ar dipole-allowed
transitions has its maximum at θ = 0, decreases first sharply
with θ , but subsequently increases slowly with θ for very large
θ values.

By comparing the experimentally obtained intensity ratio
with that obtained theoretically (Fig. 4, top panels), we see
that the overall agreement is surprisingly good. For Ar, theory
predicts not only a slow increase with θ for large θ values,
but even reproduces the measured ratio within ≈10%. For
Ne, the plotted ratio is almost independent of θ at large
angles, but the observed intensity is somewhat bigger than the
calculated one.

In both theory and experiment, the intensity of the loss
features at a certain θ value, relative to the elastic peak, reduces
as 1/E0 (for θ > 20◦) both for Ar and Ne.

In the early work of Hidalgo and Geltman [3], they predicted
for He that, for a fixed angle, the (absolute) inelastic DCS
would scale as 1/E3

0 in the high-energy limit. As the elastic
DCS approaches the Rutherford one for high energies, its cross
section will scale as 1/E2

0 . Our results for Ar and Ne agree in
this respect with this early theory.

The regions of the minima in the DCS were explored more
carefully with the McVahres spectrometer using E0 = 1 and
2.25 keV. These measurements are shown as well in Fig. 4.
The measurements show that, after the initial steep decline in
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intensity, there is a second maximum near 10◦–15◦ followed
by a leveling out for scattering angles larger than 20◦. The
45◦ results of the ANU spectrometer line up with expectations
based on extrapolation of the E0 = 1 keV McMaster results at
smaller θ values. For the 1 keV cases, the agreement between
theory and experiment is surprisingly good. The 2.25 keV
measurements show a similar pattern, but on contracted
angular scales and with smaller intensity ratios. In particular,
for Ne, the agreement between experiment and theory at
2.25 keV is not as good as at 1 keV, not surprisingly, as the
high-energy case is more challenging from a computational
(more partial waves required) as well as from an experimental
point of view (even smaller intensity ratios, and more stringent
angular resolution requirements). The agreement between
theory and experiment in Fig. 4 gives credence to the behavior
of the GOS predicted by the RDW method for K2 > 2 in
Fig. 1.

V. CONCLUSION AND DISCUSSION

We have shown that the intensity of large-angle scattered
keV electrons can be described quite successfully using the
RDW approximation for the cases of Ar and Ne. This is in
strong contrast to the first Born approximation, which predicts
virtually zero intensity under these conditions. This approach
gives the right intensity, energy dependence, and angular
dependence for the Ar 3p → 4s (J = 1) transitions. For the
Ne 2p → 3s (J = 1) transitions, experiment and theory agree
qualitatively, but the calculated loss intensities are somewhat
smaller than the observed intensities. This applies both for the
optical oscillator strength at K = 0 and the intensity of the
loss features at intermediate and large K values. The most
likely cause of the deviations of experiment and theory is
the quality of the Ne wave functions used in the calculation.
The disagreement between the theory and the Ne experimental
data presented here is of the same order of magnitude as the
disagreement of the theory with the experimental results of
Suzuki et al. [25]. The experimental results of Cheng et al. [23]

deviate much more strongly from the theory presented here
near K = 2 a.u.

At somewhat smaller K values (1 < K2 < 10), deviations
between the first Born approximation and the RDW calcula-
tions are smaller, but still substantial. This momentum transfer
region is usually included in GOS measurements (see [32] for
a recent review).

From the variations in shape of the spectra over a larger
energy loss range with change in angle (see Fig. 3), it
is clear that nondipole transitions have a different angular
dependence than dipole transitions. For example, the intensity
between 13 and 14 eV energy loss is due to monopole
and quadrupole transitions [26], and their intensity (relative
to the dipole-allowed transitions) decreases with increasing
angle. We are investigating if the RDW calculation can also
describe these cases and, if so, if these calculations can
improve our understanding of the GOS measurements for these
transitions.

In a recent paper, large deviations were found between the
angular dependence of the loss spectra for electron scattering
and photon scattering from N2 [6]. This was attributed to
the interaction with the nucleus of the scattered electrons.
Here we show that this is indeed the case and that it is
possible to describe these distortion processes quantitatively
from first principles for atomic (i.e., spherically symmetric)
targets. Expanding such theories to molecular targets is highly
nontrivial, but desirable, e.g., for the interpretation of (e,2e)
measurements of the electronic structure of molecules at
intermediate energies [33], where distortion effects are known
to influence the measured momentum densities.
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