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Abstract: Soft X-ray spectro-tomography provides three-dimensional (3D) chemical mapping based on natural
X-ray absorption properties. Since radiation damage is intrinsic to X-ray absorption, it is important to find ways
to maximize signal within a given dose. For tomography, using the smallest number of tilt series images that gives
a faithful reconstruction is one such method. Compressed sensing (CS) methods have relatively recently been
applied to tomographic reconstruction algorithms, providing faithful 3D reconstructions with a much smaller
number of projection images than when conventional reconstruction methods are used. Here, CS is applied in the
context of scanning transmission X-ray microscopy tomography. Reconstructions by weighted back-projection,
the simultaneous iterative reconstruction technique, and CS are compared. The effects of varying tilt angle
increment and angular range for the tomographic reconstructions are examined. Optimization of the
regularization parameter in the CS reconstruction is explored and discussed. The comparisons show that CS
can provide improved reconstruction fidelity relative to weighted back-projection and simultaneous iterative
reconstruction techniques, with increasingly pronounced advantages as the angular sampling is reduced. In
particular, missing wedge artifacts are significantly reduced and there is enhanced recovery of sharp edges.
Examples of using CS for low-dose scanning transmission X-ray microscopy spectroscopic tomography are
presented.
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INTRODUCTION

Tilt series tomography is now a popular and well-developed
method for measuring the three-dimensional (3D) mor-
phology and spatial distribution of materials (Baruchel et al.,
2006; Boudin et al., 2010; Leary et al., 2012; Ercius et al.,
2015). A typical tilt series tomography data set is composed
of a set of two-dimensional (2D) projection images collected
at different sample rotation angles. A reconstruction algo-
rithm is then applied to the set of projection images to gene-
rate 3D information. The fidelity of the resulting
tomographic reconstruction is related to both the image
collection and the reconstruction algorithm.

Scanning transmission X-ray microscopy (STXM)
(Howells et al., 2007; Ade & Hitchcock, 2008; Hitchcock,
2012) provides chemical speciation and high-resolution
quantitative mapping in projection with a routine resolu-
tion of ~30 nm and a state-of-the-art resolution of 10 nm
(Chao et al., 2012). STXM spectro-tomography (multi-angle
tomographic acquisition at multiple X-ray energies)
(Johansson et al., 2006; Johansson et al., 2007; Wang et al.,

2011; Schmid et al., 2016) provides four-dimensional (4D)
information, in the form of chemical mapping in 3D, with a
spatial and chemical resolution dependent on sampling and
data processing. Near-edge X-ray absorption fine structure
(NEXAFS) (Stöhr, 1992) provides a high degree of chemical
sensitivity and provides readily quantifiable chemical infor-
mation. 4D spectro-microscopic analysis has been achieved
for environmental and biological (Obst et al., 2009; Obst &
Schmid, 2014; Schmid et al., 2014) and polymer samples
(Hitchcock et al., 2008). Although radiation damage rates
vary greatly among different samples, for any given sample,
when compared with electron energy-loss spectroscopy in a
transmission electron microscope (TEM-EELS), STXM
provides lower radiation damage for a given core level
spectroscopy measurement (Wang et al., 2009a, 2009b).
Thus, STXM can offer advantages over analytical TEM for
studies of radiation-sensitive materials such as biological
samples and polymers.

Currently, common algorithms used to reconstruct
tomographic data sets include weighted back-projection
(WBP) (Vainshtein, 1970; Xu & Wang, 2005) and various
iterative reconstruction methods, such as the simultaneous
iterative reconstruction technique (SIRT) (Gilbert, 1972;
Penczek, 2010). Both methods have been used previously in*Corresponding author. aph@mcmaster.ca
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STXM tomography (Berejnov et al., 2013). However, two key
challenges arise in conventional STXM tomography when
there is under-sampling in projection data acquisition. First,
images are acquired at a limited number of discrete sample
rotation angles (tilt angles) and so the information recorded
is incomplete. The tilt increment and number of tilt angles is
typically set by considerations of instrument and sample
stability, radiation dose, and acquisition time. Second, sam-
ples for soft X-ray STXM tomography must be relatively thin
(<300 nm) to allow X-ray penetration. When a flat sample is
rotated to a high angle, the incident X-ray may be fully
absorbed by the sample or may become shadowed by a
support grid. As a result, 180° rotation cannot be achieved,
leaving a missing wedge of information in the tilt series.
Typically, SIRT is more robust thanWBP to the effects of the
missing wedge and limited angular sampling (Gilbert, 1972;
Penczek, 2010) and generally yields higher-quality 3D
reconstructions (Bangliang et al., 2000). Nevertheless, the
highly under-sampled measurements typical of STXM
tomography still lead to significant artifacts in both WBP
and SIRT reconstructions.

The relatively recently developed information recovery
method known as compressed sensing (CS) can substantially
reduce the number of measurements needed to recover a
signal (Candès et al., 2006; Donoho, 2006; Blumensath &
Davies, 2009). CS and related methods have been deployed
efficaciously to reduce the number of images needed for
tomographic reconstruction (Sidky & Pan, 2008), and to
reduce artifacts arising from the missing wedge and thus
reduce the overall dose needed for a given quality of 3D
chemical imaging. CS has been shown to give high-fidelity
reconstructions even when very few tilt angles are used
(Saghi et al., 2011; Leary et al., 2013; Saghi et al., 2016), as
small as nine angles in some cases (Saghi et al., 2011). In CS,
prior knowledge of sample properties, such as the local
homogeneity of constituent phases, is used to enable robust
reconstructions from highly under-sampled measurements.
CS approaches to electron tomography have demonstrated
substantial achievements, including successful reconstruc-
tions of morphological and chemical signals from highly
limited tilt series data (Nicoletti et al., 2013; Haberfehlner
et al., 2014; Torruella et al., 2016). Here, we present CS
tomography applied to 4D STXM analysis of high radiation-
sensitive samples.

Many polymer samples are too beam sensitive for elec-
tron tomographic characterization. For these systems, che-
mical mapping is preferably performed in STXM. Proton
exchange membrane fuel cells (PEM-FCs) represent a major
emerging area in STXM characterization, and are indust-
rially of considerable importance. PEM-FC technology is a
promising green resource for stationary and automotive
power applications (Folkesson et al., 2003; Wang et al.,
2005). The oxygen reduction reaction at the cathode, in
which oxygen, protons, and electrons combine to form water
in a catalyzed reaction, is the key rate-limiting step in PEM-
FC. The cathode consists of carbon support particles deco-
rated with Pt catalyst particles, surrounded by proton

conducting perfluorosulfonic acid (PFSA) polymer (referred
to as the ionomer when in the cathode) and inter-particle
pores. Since a proton conductor such as PFSA is required to
transport protons from the membrane–cathode interface
throughout the cathode, the distribution of ionomer in the
cathode plays a critical role in PEM-FC. Optimization of
ionomer loadings and distributions requires direct observa-
tions of the internal structures and chemical states of the
cathode catalyst layer in membrane electrode assemblies.
STXM has been applied as an effective method for mapping
ionomer in 2D (Susac et al., 2011; Susac et al., 2013) and
there has been some exploration of the potential for 3D
ionomer mapping (Berejnov et al., 2013). The radiation
sensitivity of PFSA has made it difficult to measure the 3D
chemical structure, morphology, and quantitative distribu-
tion of ionomer in PEM-FC cathodes. Methods to reduce the
dose by reducing the number of tilt angles are required for
meaningful 3D chemical imaging.

In this work, we compare the results of WBP, SIRT, and
CS reconstructions applied to several tomography data sets.
In order to identify the benefits and characteristics of the
compressed sensing approach, we have used readily available
conventional approaches for the comparative WBP and
SIRT analyses. First, we demonstrate the efficacy of CS
tomography in the case of a high-angle annular dark-field
scanning TEM (HAADF-STEM) tomography study of Au
nanoparticles. This study highlights the performance of CS
tomography in tilt series data comprising few projections
and exhibiting the characteristic missing wedge in electron
tomography and shows robustness to data corruptions
including diffraction effects in crystalline samples. Second, a
bilayer thin film was fabricated specifically to test the cap-
ability of STXM tomography to derive the correct 3D dis-
tribution of chemical components important in the analysis
of PEM-FC electrodes. The model system contains compo-
nents with spectral signatures similar to those in a PEM-FC
cathode. A third sample, consisting of a complex polymer
microsphere system (Johansson et al., 2007; Hitchcock et al.,
2008) composed of a low-density linear acrylate in a poly-
styrene shell inside a carbon nanopippette (Schrlau et al.,
2008), illustrates the application of STXM tomography to a
sample with multiple overlapping chemical spectral sig-
natures present. Full 180° rotation was possible for this
sample, enabling an exploration of the effects of the size of
the missing wedge on CS and other reconstruction methods.
Together, these analyses establish CS tomography as a
powerful technique for STXM tomography of radiation-
sensitive materials.

METHODS

Electron Tomography
Electron tomography tilt series data was acquired using
an FEI Tecnai F20 FEG-TEM (Hillsboro, OR, USA)
operated at 200 kV. Gold nanoparticles were prepared by
a modified seed-mediated growth process as reported by
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Bandhopadhyay et al. (2017). The sample was drop cast onto
200 mesh copper TEM grids coated with a continuous car-
bon film. A tilt series of HAADF-STEM images was acquired
from −68° to +64° in 2° increments. The tilt series image
stack was first aligned using cross-correlation methods fol-
lowed by alignment of the tilt axis, performed using
Inspect3D (FEI).

STXM Tomography
STXM tomography was carried out at the ambient STXM on
beamline 10ID1 (SM) at the Canadian Light Source (CLS)
and at beamline 5.3.2.2 at the Advanced Light Source (ALS).
The tomography sample holder and rotation system was
initially developed by Johansson et al. (2006). For the PEM-
FC study in this work, we used an improved device with a
smaller stepper motor and a simpler, more reliable mounting
system (Schmid et al., 2014). In this system, the rotation is
driven by a two-phase micro-stepper motor (Faulhaber
ADM0620; Faulhaber, Schoenaich, Germany). The sample is
a single strip cut from a 100 mesh, 3mm TEM grid using a
fresh scalpel. This strip is glued using nail polish to the tip of
a 0.6-mm diameter brass rod, and the rod is mounted to the
stepper motor using the chuck from a mechanical pencil
using 0.6mm graphite. The full sample width is around
250 µm. This narrow sample is necessary due to spatial
constraints imposed by the order sorting aperture, which is
only 250 µmupstream from the X-ray focal point when using
C 1s photon energies (270–330 eV). The projection images
were measured with the samples at room temperature, after
the STXM tank was pumped to a residual vacuum of
~1mbar, then back filled with He to 0.2 bar. Further details
on the experimental methodology are included in Supple-
mentary Table 1.

Supplementary Table 1

Supplementary Table 1 can be found online. Please visit
journals.cambridge.org/jid_MAM.

The PEM-FCmodel system comprised a two-layer polymer
film with Pt decorated carbon fibers in one layer and Teflon™
fibers in a second layer. The fibers in each layer were embedded
in an epoxy. A STXM spectro-tomography data set was recorded

from −72° to +72° at 4° intervals. At each angle images were
measured at four energies: 278 and 285 eV at the C 1s edge, to
map the carbon fibers, and 684 and 694 eV at the F 1s edge, to
map the Teflon™ fibers. The F 1s images were recorded before the
C 1s images to reduce the impact of radiation damage on the
quantitation of the Teflon™.

The polymer microsphere sample (Johansson et al., 2007;
Hitchcock et al., 2008) consisted of an aqueous suspension of
0.8-µm diameter polymer particles enclosed in a carbon nano-
pipette (Schrlau et al., 2008). The wall of the carbon nanopipette
consisted of fused multiwalled carbon nanotubes grown inside a
tapered glass capillary. The tube wall was 45-nm thick and had
an internal diameter which tapered from 3 to 0.5µm. The
microspheres inside the nanopipette were composed of a rigid,
hollow polystyrene (PS) shell which encapsulated a dilute linear
polyacrylate (PA) water solution. The entire sample was initially
suspended in water at the time of preparation. A significant
portion of the water was lost during preparation and some of
the acrylate diffused out of the microspheres, resulting in a layer
of PA on the inner surface of the nanopipette. Images of the
nanopipette sample were acquired for 23 energies from 282.5 to
306 eV in the C 1s absorption edge. For tomography, the com-
bined energy-image stack was acquired in a tilt series from −90°
to +90° with a 4° increment.

The image contrast in STXM is based on NEXAFS
(Stöhr, 1992), which provides sensitivity to the chemical
structure due to creation of inner-shell excited and ionized
states. In STXM, X-ray absorption is measured by recording
the transmitted signal (It) as a function of photon energy.
The transmitted signal is then converted to absorption signal
[optical density (OD)] by Lambert–Beer’s law:

OD= ln I0 =Itð Þ (1)

where I0 is the incident photon flux, typically measured in an
area without the sample but with all underlying sample
support materials present.

Axis2000 (Hitchcock, Hamilton, Canada) was used for the
initial analysis of both STXM data sets. After alignment and
conversion from transmission to absorption, chemical maps at
each angle were obtained from the difference of the peak
energy image and the pre-edge energy image. Angle stacks
consisting of chemical maps generated at every angle for each
component were then assembled and further aligned. The full
number of angles and parameters used in the SIRT and CS

Table 1. Reconstruction Parameters Used for Simultaneous Iterative Reconstruction Technique (SIRT) and Compressed Sensing (CS)
Analysis of the Three Data Sets for Different Numbers of Angles or Angle Ranges

Parameters Au Nanoparticle Sample PEM-FC Model Sample PS-Acrylate Sample

No. of energies 1 4 23

No. of angles/range 67 23 12 37 19 10 ±90° ±74° ±62°
SIRT Iteration n 20 20 20 20 20 20 20 20 20
CS β 0.7 0.4 0.2 0.3 0.1 0.06 0.2 0.08 0.05

Iteration n 100 100 100 100 100 100 30 30 30

PEM-FC, Proton exchange membrane fuel cells; PS, polystyrene; SIRT, simultaneous iterative reconstruction technique; CS, compressed sensing.
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reconstructions are summarized in Table 1. The 3D
reconstruction software IMOD (Kremer et al., 1996) was
used for WBP and SIRT reconstructions. A python-based
implementation was used for the CS reconstructions. The CS
code used in this study uses a total variation (TV)-based,
compressed sensing algorithm (https://github.com/
emmanuelle/tomo-tv), employing a real space projection
operator. It has been implemented in a dedicated X-ray spec-
tromicroscopy processing tool called Mantis (Lerotic et al.,
2014), available at http://spectromicroscopy.com. Mantis is an
open-source tool developed in Python for spectromicroscopy
data analysis. Recently a new tab for spectro-tomography has
been added which allows tomographic reconstruction of single
energy data sets as well as energy-by-energy or component-by-
component reconstruction. An image of the layout of the
spectro-tomography interface in Mantis is provided in Sup-
plementary Figure 1; both CS and SIRT are supported. The
reconstructed 3D volume is visualized within Mantis by xy, xz,
and yz orthoslices. For spectro-tomography data, reconstruc-
tions can be done for each energy. In those cases spectral
information for each voxel of the resulting volume is available
and can be inspected with an ROI tool.

Supplementary Figure 1

Supplementary Figure 1 can be found online. Please visit
journals.cambridge.org/jid_MAM.

Visualization
Chimera (University of California, San Francisco, UCSF)
(Pettersen et al., 2004) and Fiji (ImageJ) (Schneider et al., 2012),
were used for volume rendering and visualization. The z-
direction labeled on the reconstruction visualizations is parallel
to the optic axis (themissing wedge direction), the y-direction is
parallel to the tilt axis and the x-direction perpendicular to these.

Compressed Sensing
The concept of compression is pervasive in contemporary
data handling, forming the foundation for important image
file formats such as the ubiquitous JPEG format. The success
of compression relies on the fact that most natural images
can be described very well by a small number of coefficients
in some basis. A basis consists of a set of functions that can
be used to represent the image when combined with appro-
priate weighting factors or coefficients. Popular bases used
for image compression are the discrete cosine transform
(used in the JPEG format) and the discrete wavelet transform
(used in the JPEG-2000 format). In the context of image
compression, an image is first fully sampled (i.e., a mea-
surement is recorded at each pixel in the image) before a
transform is applied to the image data to determine the
coefficients in the selected basis. To compress the image data,
only the largest coefficients are retained and the small coef-
ficients are discarded. Given that the majority of information
in the image is contained in far fewer coefficients in the

chosen basis than pixels in the original image, the data is said
to be compressed. The stored coefficients can in turn be used
to recover the image data with minimal information loss by
inverting the transform used in the compression process.

In symbolic notation, the transform can be written as an
operator Ψ, which, when applied to an image x, returns a list
of coefficients, a vector c:

c=Ψx: (2)

If the coefficients are mostly zero, the vector c is said to
be sparse. The number of non-zero elements in c can be
counted, k, and then the vector is said to be k-sparse. In
compression, sparsity is enforced by setting small coefficients
to zero, giving an approximate but nearly complete repre-
sentation of the original image data. In this case, the coeffi-
cient vector is only approximately sparse, but the compressed
image still contains the most important information.

In CS, the goal is to directly target the non-zero coeffi-
cients in c rather than the fully sampled image. If it can be
assumed that the number of coefficients in c is small for a
complete or nearly complete representation of the fully
sampled data, then taking measurements directed at deter-
mining this small number of coefficients allows for taking
fewer measurements during data acquisition. However, the
way these few measurements are taken is critical in CS to
ensure recovery of the most important coefficients in c.

In general, the signal measured experimentally is of
the form

b=Φx (3)

where b is the measurements recorded on the object x. The
operator Φ defines how the measurements are taken. In
the case of tomography,Φ describes line integrals through the
3D object x which return projection data b. In the framework
of CS, the sampling equation (3) is modified to give

b=ΦΨ*c (4)

whereΨ* denotes the inverse transform. Equation (4) follows
from combining equations (2) and (3).

Two key requirements underpin the mathematical
theory for CS: (i) x is sparse in the transform domain Ψ and
(ii) Φ and Ψ are incoherent. The requirement for sparsity
emerges in a straight-forward way from the concept of
compression. In order for a limited number of measure-
ments to recover the important coefficients, it is critical that
the number of coefficients sought is small. The concept of
incoherence can be considered in two ways. In the first,
incoherence ensures that individual measurements of b
provide information about many coefficients of x. In the
second, the incoherence requirement can be understood to
establish that artifacts due to under-sampling appear as noise
during the reconstruction of x, allowing the significant
coefficients to stand out.

Given a set of measurements, CS aims to recover the
sparse coefficient vector c. Direct minimization of the
number of non-zero coefficients is generally computationally
intractable. However, it has been shown that the computa-
tionally feasible problem of minimizing the ℓ1-norm returns
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the sparsest solution. The ℓ1-norm is defined as the sum of
the absolute values of the i elements of the vector c:

ck ki =
X

i cij j: (5)

The CS reconstruction can be written as a regularized
minimization problem:

argminx xð Þ= Φx - bk k22 + β Ψxk k1
� �

; (6)

where the squared ℓ2-norm, taken as

kqk 2
2 =

X
i
q2i; (7)

for any vector q, compares the reconstructed signal x with
the experimental measurements b, and the second term,
using the ℓ1-norm, promotes sparsity of the signal in a
selected transform domain. In the combined minimization,
the first term establishes data fidelity and the second term
acts as a penalty term directing the reconstruction toward the
sparsest solution. The factor β is an adjustable weighting
parameter that is tuned according to the intrinsic sparsity
and the relative magnitudes of the signals in the minimiza-
tion. In its most pure form, the CS approach is designed to
overcome artifacts due to under-sampling.

The operator for the sparse transform domain, Ψ,
should generally be selected in accordance with prior
knowledge of the structure in the object. In the simplest case,
if the object can be represented by a small, finite number of
volume elements (voxels), then the identity transform would
be a suitable operator, Ψ. Another sparse transform domain
for many materials samples in the physical sciences is the
gradient domain, since many samples consist of homo-
geneous regions of near constant density with sharp
boundaries. In the gradient domain, such samples are

represented by a small number of pixels at the boundaries
between different homogeneous regions. Figure 1a illustrates
such a transformation of an image into the gradient domain.
The ℓ1-norm of spatial finite differences in an image serves
to describe this sparse domain for computational purposes
and is also called the TV-norm. For chemical samples, this
TV-norm is applied in the spatial domain (typically for
separated chemical phases); that is, the sparsity in the spatial
gradient domain is used to improve tomographic recon-
struction. Alternative sparsifying transforms may also be
suitable for CS approaches in tomography, such as total
generalized variation (Bredies et al., 2010), wavelets and
related transforms (Mallat, 2008), and adaptive strategies
such as dictionary-learning techniques (Duarte-Carvajalino
& Sapiro, 2009). In this study the sparseness of the data
was described by the TV-norm that was applied with
different degrees using the factor β that was tuned for each
data set.

Regarding the second requirement for CS, that of inco-
herence, insight can be gainedmost readily by considering tilt
series tomographic sampling in terms of a radial sampling of
Fourier space via the Fourier slice theorem (Kak & Slaney,
1988), which seminal studies have shown satisfies the inco-
herence requirement (Candès et al., 2006; Lustig et al., 2007).
The use of radial Fourier sampling in CS is further supported
by recent theoretical work on optimized CS sampling regimes
(Adcock et al., 2017). In this regard, CS tomographic recon-
struction can be approached using Fourier or real space based
projection operators, with the latter being used in this work.
Figure 1 visually summarizes the algorithmic approach to
solving equation (6) for the CS-TV tomography in this study,
using a simple 2D phantom object similar to the PEM-FC
material studied by STXM tomography.

Figure 1. Schematic illustration of the compressed sensing tomographic reconstruction procedure. a: A transform
domain is selected that represents the object in a sparse way (e.g., gradient domain sparsity shown). b: Tilt series pro-
jection data is acquired and (c) an initial reconstruction is performed by back projection or other methods. This inter-
mediate reconstruction is likewise transformed, exhibiting less sparsity as the under-sampling artifacts are spread in a
noise-like manner throughout the sparse domain. The transformed reconstruction and re-projections are refined by an
iterative optimization algorithm to yield (d) the final reconstruction with (e) high sparsity in the transform domain.
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RESULTS

Compressed Sensing Electron Tomography
CS tomography has seen widespread application in electron
microscopy to achieve high-quality tomographic recon-
structions from limited and challenging data sets. Here, in
developing CS-TV methods for STXM tomography, we first
highlight the performance of the reconstruction algorithm
for handling missing wedge artifacts and diffraction contrast
in electron tomography using a crystalline Au nanoparticle
sample. This sample also provides a means for illustrating
the robust performance of the CS-TV tomography approach
when under-sampling a conventional tilt series by increasing
the increment between tilt angles. Figure 2 compares
orthogonal slices (“orthoslices”) extracted from tomographic
reconstructions using a common WBP and SIRT imple-
mentation (IMOD) with those from the CS-TV algorithm
(Mantis). Figures 2a–2c shows the xy slices for WBP, SIRT,
and CS-TV reconstructions from the full 67-angle set,

whereas Figures 2d–2f presents the xz slices of the same
reconstruction. The xz slices are emphasized as these show
most prominently the artifacts resulting from the missing
wedge due to the limited tilt range. Aside from angle-specific
diffraction in 2D images at specific tilt angles, there is good
agreement between the 2D projection generated from the
reconstructions with the original data, as shown for a tilt
angle of 0° in Supplementary Figure 2.

Supplementary Figure 2

Supplementary Figure 2 can be found online. Please visit
journals.cambridge.org/jid_MAM.

To compare the reconstruction results with a reduced
number of tilt angles, sub-sets of 23 angles (with 6° incre-
ments) and 12 angles (with 12° increments) were analyzed.
As summarized in Figures 2d–2i, the WBP and SIRT
reconstructions for all three sets of projection angles used
showed “streaking” artifacts, characteristic of the under-
sampling between adjacent tilts and the missing wedge. The
surface of the Au particles became less well defined as the
number of tilt angles was decreased. In contrast, the results
from the CS-TV reconstruction were similar, and overall of
much higher quality, for all three sampling regimes. The xy
slices for both SIRT and CS-TV reconstructions showed
some banding in the intensities throughout the volume,
which are attributed to diffraction contrast effects, that is
modulations of signal intensity at or near Bragg conditions of
the Au crystals. Although for an individual particle such
diffraction contrast contributions would only modulate the
relative intensity of the particle, in the ensemble of particles,
which overlap significantly at high tilt, the effect of the
diffraction contrast gives rise to the observed bands. The
difference in brightness of particles should not be interpreted
as missing intensity but rather is a result of inconsistent
intensities in the input tilt series.

The CS-TV reconstruction deals with the diffraction
artifacts in the tilt series somewhat differently from the WBP
and SIRT reconstructions in that the CS-TV reconstructions
show larger regions of flatter intensity. At the top and
bottom of the orthoslice in Figure 2c, particles appear rela-
tively brighter than in the middle of the particle aggregate,
due to changes in the total signal magnitude relative to the
TV-regularization parameter for each 2D reconstruction in
the planes perpendicular to the tilt axis (see also Compressed
Sensing section). 3D TV-regularization methods, addition-
ally incorporating the gradient along the tilt axis in the
TV-norm, have been applied in electron tomography of
samples exhibiting high levels of diffraction contrast, and
these 3D CS-TV methods further reduce diffraction effects
by promoting particle densities that are homogeneous
throughout the full reconstruction volume (Leary et al.,
2016). However, there is a trade-off in the computational
efficiency in 3D compared with 2D reconstruction which
may be undesirable for applications in spectroscopic STXM

Figure 2. Weighted back-projection (WBP) (left), simultaneous
iterative reconstruction technique (SIRT) (middle), and compressed
sensing (CS) (right) electron tomography reconstructions of a Au
nanoparticle sample. Selected slices through the xy plane of
(a) WBP, (b) SIRT, and (c) CS reconstructions using all 67
acquired projections. Slices through the xz plane are compared for
three different tilt increments: (d–f) reconstructions using all 67
acquired projections, (g–i) reconstructions using 23 projections,
(j–l) reconstructions using 12 projections. The insets highlight the
particles near the center of the volume. See Supplementary Figure 2
for comparison of the original 2D projection image at 0° with that
generated from the SIRT and CS reconstructions.
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tomography where computational requirements are already
higher due to the use of signals at multiple energies.

Figure 3 presents line intensity profiles in horizontal and
vertical directions from the reconstructions for all three tilt
angle ranges. The WBP vertical profile shows a high noisy
background along the vertical missing wedge direction, in
agreement with Figures 2d, 2g, 2j. For the SIRT reconstruc-
tions, the intensity in the horizontal profile is reduced as the
number of projections is reduced. However, there is no
significant change in the CS profiles as the number of pro-
jections is reduced. Both the horizontal and vertical profiles
of CS have very low background intensity and the surfaces of
the Au particles are well reconstructed. We note that the
SIRT analysis can be improved. There are many different
ways to implement SIRT. Alternative SIRT strategies include

those described in the overview by Elfving et al. (2012),
which outlines the approaches first reported by Cimmino
(1938) and Landweber (1951). Other iterative based methods
such as those proposed by Andersen & Kak (1984), Gregor &
Benson (2008), and Censor et al. (2008), may offer further
improvements to a SIRT type of analysis. Any one of these
may work better or worse for a given data set. We are using a
readily available and widely used SIRT implementation. Our
main goal was to show the difference between a typical SIRT
implementation and what the addition of prior knowledge in
the form of TV in CS does in terms of the reconstruction
quality. Supplementary Figures 3 and 4 present SIRT results
with addition of compact support and non-negativity con-
straints. When these same approaches are also applied to the
CS analysis, there is still clearly a significant benefit to using CS.

Figure 3. Line intensity profiles through xz planes for (a) weighted back-projection (WBP), (b) simultaneous iterative
reconstruction technique (SIRT), and (c) compressed sensing (CS) tomographic reconstructions using 67, 23, and 12
projections as in Figure 2. The insets show the locations of the selected lines.
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Adding the non-negativity constraints improves the SIRT
results. In the same way, there may also be other ways of
improving CS, including applying non-negativity. It is critical
that fair comparisons be made and these comparisons should
include equivalent constraints (only change one thing at a
time, in this case moving from SIRT to CS is meant to only add
the TV constraint). In fact, CS continues to develop as a field,
suggesting other possible improvements to come that are
beyond the scope of the present work.

Supplementary Figures 3 and 4

Supplementary Figures 3 and 4 can be found online.
Please visit journals.cambridge.org/jid_MAM.

These electron tomography results illustrate key perfor-
mance characteristics of CS reconstruction methods. They
present a useful starting point for transferring CS tomography
approaches to STXM and for comparing performance char-
acteristics in considering missing wedge and under-sampling
artifacts common to electron and X-ray tomography.

STXM Tomography of a Model PEM-FC Sample
Figures 4a and 4b shows the individual component X-ray
absorption reference spectra used to analyse the bilayer
model carbon–fluorine fiber sample. For spectral analysis,
and to explore an optimized 2D projection analysis for
comparison with 3D chemical imaging using a restricted set
of photon energies, a region of the bilayer sample was mea-
sured over a range of photon energies at the C 1s and F 1s
edges. Data were acquired in the form of a sequence of
images at varying photon energies, also called stacks
(Jacobsen et al., 2000) on a transverse cross-section of the
bilayer sample. After alignment, the intensity at a given pixel
through the stack gives a transmission spectrum of the
material at that pixel. The C-fiber map (Fig. 4c) was gener-
ated from the C 1s stack data whereas the F-fiber (Teflon™)
map (Fig. 4e) was generated from the F 1s stack data, in each
case using stack fit (Hitchcock, 2012), a quantitative chemi-
cal analysis process in which reference spectra and a constant
are used in a singular value decomposition (Zhang et al.,
1996) of the multi-energy absorption data set. The Pt-shell
map (Fig. 4d) was derived from the constant map of the C 1s
stack fit. Figure 4f presents a color-coded composite high-
lighting the distribution of Teflon™ relative to the distribu-
tions of the carbon fiber and the Pt shell. Signals arising from
the carbon fiber are shown in red, the Teflon™ fiber is shown
in green, and the Pt shell is shown in blue. Areas without
color correspond to regions of embedding resin. From the
full C 1s and F 1s spectra, component-specific peak energies
and pre-edge energies were identified. The first peak in the C
1s spectrum corresponds to C 1s→ π* transitions, which
only occur in the graphitic carbon fiber. Thus the carbon
fiber map was obtained by subtracting a pre-edge absorption
image (278 eV) from the image at the π* peak (285.3 eV). The
Teflon™ fibers, simulating the PFSA component of PEM-FC

electrodes, were selectively probed at the F 1s edge, since the
Teflon™ fibers are the only component containing fluorine.
The C 1s pre-edge image (278 eV) was dominated by con-
tributions from Pt and F. An estimate for the Pt signal was
generated from the C 1s pre-edge image and the F 1s map
using the procedure outlined by Hitchcock et al. (2014). In
order to limit radiation damage, tilt series images were
recorded only at 278.0, 285.3, 684.0, and 693.0 eV at each
scan angle. Due to limited penetration at high angles, the
maximum rotation angle was ±72°, and this range was
sampled with a 4° increment.

In order to compare the reconstruction quality of WBP,
SIRT, and CS-TV algorithms with varied sub-sampling, two
sub-sets from the complete 37-projection set, consisting of
19 projections and 10 projections, were reconstructed by
each method. Figure 5 presents xy and xz orthoslices from

Figure 4. a: C 1s and (b) F 1s spectra of the components of a
model system consisting of a two-layer structure in which one
layer consists of Pt decorated graphitic carbon fibers embedded in
epoxy and the second layer consists of Teflon™ fibers embedded in
epoxy. The sample is a microtomed slice perpendicular to the
plane of the two layers. Quantitative 2D projection maps of
(c) C-fiber derived from the C 1s image sequence, (d) Pt derived
from the C 1s and F 1s image sequences, and (e) Teflon™ fiber
derived from the F 1s image sequence. The gray scale in (c–e) is
thicknesses in nm. f: Rescaled color composite (C-fiber in red,
Teflon™ fiber in green, Pt in blue). The black regions in the com-
ponent maps and color composite are regions filled with epoxy.
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Figure 5. Slices through xy and xz planes of three-dimensional volumes of the C-fiber component reconstructed by
(a–c) weighted back-projection (WBP), (d–f) simultaneous iterative reconstruction technique (SIRT), and (g–i) com-
pressed sensing total variation (CS-TV) methods. The reconstructions were performed using (a,d,g) all 37 tilt angles,
(b,e,h) 19-tilt angles, and (c,f,i) 10-tilt angles. The insets highlight a selected sub-region intersected by both the xy and
xz planes as shown by the white dashed line. j–l: The line profile of each row. The upper images of each set is the A–B
line for the xy slice, the lower images of each set is the C–D line for the xz slice.
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the 3D reconstructed volume for the carbon fiber. The other
components showed similar results and are displayed as
multi-component surface renderings in Figure 6. When all
37 projection tilt angles were used, the WBP and SIRT
reconstructions reproduced the carbon support fiber dis-
tribution to a reasonable approximation (Figs. 5a and 5d).
However, even at this degree of sampling, the CS-TV
reconstructions were of substantially higher quality, with a
much lower level of artifacts than the SIRT result, greatly
easing interpretation of the carbon fiber support morphology
(Fig. 5g). When profiles along the A–B line in xy and the
C–D line in xz slices were compared, the intensity distribu-
tion from theWBP reconstruction was much lower than that
in the SIRT and CS reconstructions, and the SIRT recon-
struction contained more negative signal. As the tilt incre-
ment was increased and the number of projections
decreased, the quality of the reconstruction results from the
WBP and SIRT methods showed substantial degradation.
This was especially noticeable in the xz slices (Figs. 5c and 5f
lower) revealing missing wedge effects. Streaking artifacts
were more prominent, blurring in the missing wedge direc-
tion was greater, the particles became elongated in the
missing wedge direction, and gray levels were more dis-
tributed throughout the volume. In the xy slices (Figs. 5b, 5c,
5e, 5f upper), both the density and the shape were distorted.
In contrast to the WBP and SIRT results, the CS-TV recon-
structions did not show substantial changes using 19
(Fig. 5h) or only 10 projections (Fig. 5i). For the CS-TV
reconstructions, the distribution and morphology of the
carbon fibers remained nearly identical to that in the
reconstruction using the full projection series. Similar con-
clusions can be obtained from the line profile plot results. As

the number of projections was decreased, theWBP and SIRT
reconstruction line profiles changed, especially for the
10-projection reconstruction, while the line profiles for the
10-projection CS reconstruction were similar to those from
the 37-projection reconstruction. The intensity of the SIRT
reconstruction signal decreased by ~50% from the 37- to the
10-projection, and the background became noisier. The
success of CS-TV reconstruction relative to WBP and SIRT
became increasingly pronounced as the number of projec-
tions was reduced.

Figure 6 presents color-composite isosurface renderings
of WBP, SIRT, and CS-TV reconstructions for all three
chemical components. Note that the epoxy contributed
minimally to the Teflon™ fiber, carbon fiber, or Pt maps
because those maps were derived from optical density dif-
ferences at energies where the spectrum of the epoxy does
not change (Fig. 4a). In Figures 4 and 6, the empty regions
are uniformly filled with epoxy. The isosurface renderings
were obtained using the Otsu automatic threshold method
(Otsu, 1975) implemented in ImageJ. Figure 6 compares
0° and 90° views of the CS-TV and SIRT reconstructions
shown in Figure 5, and reinforces the trends seen there. For
the full 37-tilt angle set (Figs. 6a, 6d, 6g), the SIRT, CS-TV,
and WBP reconstructions exhibited similar morphology and
spatial distributions for the three components. However,
even with the full set of angles, the WBP reconstruction
showed high background levels (Fig. 6g). The isosurfaces
showed compact structures with sharp edges, consistent with
a relatively high signal-to-noise ratio (SNR) in the recon-
struction volume. The results from CS-TV for the 19-tilt
angle (Fig. 6b) and 10-tilt angle (Fig. 6c) sets remained of
high quality, showing only small changes relative to the

Figure 6. Isosurface renderings of C-fiber (red), TeflonTM (green), and Pt (blue) components. The surfaces were deter-
mined by Otsu automatic thresholding (Otsu, 1975) of the reconstruction volumes and are shown at 0° (left) and 90°
(right) for (a–c) compressed sensing total variation (CS-TV) reconstructions, (d–f) simultaneous iterative reconstruc-
tion technique (SIRT) reconstructions, and (g–i) weighted back-projection (WBP) reconstructions. The reconstructions
were performed using (a,d,g) 37 projections, (b,e,h) 19 projections, and (c,f,i) 10 projections.
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analysis of the 37-tilt angle set. However, in the correspond-
ing SIRT reconstructions, substantial speckle and a gradual
smearing of the edges appeared in the reconstructions as the
number of projections was reduced (Figs. 6e and 6f). The signal
from the WBP reconstructions of 19-projection (Fig. 6h) and
10-projection (Fig. 6i) sets was basically lost in the noise. The
missing wedge problem strongly affects WBP, as has been
noted elsewhere (Penczek, 2010).

As highlighted in equation (6), the CS-TV method
requires the selection of the parameter β, the weighting factor
for the TV-norm in the reconstruction process. In principle,
the optimal value for β is defined by the intrinsic sparsity of the
object and the relative magnitudes of the signals in the recon-
struction. Experimentally, the value of β will also be influenced
by noise or other artifacts in the data set. Moreover, the true
sparsity of the object will not be known in general. As a result,
β must be optimized for each data set. Figure 7 illustrates the
effects of different choices of β for CS-TV reconstruction of the
37-projection data set of the bilayer model sample (carbon
fiber map). When βwas set too low (Figs. 7a and 7d) there was
little effect of TV regularization and the reconstruction showed
negligible benefit of CS. When β was set too high (Figs. 7c
and 7f), the effect of the TV penalty term was over-
emphasized, resulting in a flattened image with plateaus in the
reconstructed signal and background which did not represent
physical structures in the sample. This is clearly seen in the line
profiles across the projections (Figs. 7g and 7h).

In general, the optimal β value will be larger for greater
signal magnitudes, for example, if more projections are
included in the input data set. In this case, the data fidelity
term in equation (6) is larger, and the penalty term requires
greater weight to have the same effect. The sparsity of the
object will also affect the optimal β, as will the noise level and
the presence of other inconsistencies in the data. Although
these heuristics provide some guidelines for selecting β, often
empirical optimization of the β parameter is needed. In
principle, the β parameter could be normalized relative to the
term accounting for consistency with the experimental data,
removing some of the dependence on the number of tilt
angles. The implementation presented here maintains the
behavior of the β parameter from earlier work for con-
sistency in the application of CS-TV to STXM tomography.
For a day-to-day user, the effect remains the same: β is
necessarily optimized for the particular data set at hand.
Typically, this optimization may be carried out on a repre-
sentative xz slice from a given sample, and then the more
time- and computationally-intensive volume reconstruction
can be carried out with the selected optimal β value.

3D Mapping Acrylate/Polystyrene in a Nanopipette
The microsphere-nanopipette sample allowed exploration of
CS-TV tomography using a data set with a richer spectral
dimension than that of the bilayer model sample. This case
exhibits gradient domain sparsity (TV-sparsity) in the spatial
dimensions, making use of a separate decomposition of the
finite number of chemical phases in the spectral dimension.
In this sample, multiple carbon-based compounds with
overlapping signals were present, demonstrating the power of
4D imaging using STXM spectro-tomography. In addition,
the needle-like sample geometry enabled evaluation of CS-
TV tomography with a data set acquired over a complete 180°
tilt range, which allowed examination of the effect of varying
the angular range by artificially introducing a missing wedge
post facto.

The C 1s spectra of the components extracted from the
C 1s stacks are shown in Figure 8a. The X-ray absorption was
saturated at several photon energies around the intense
285 eV C 1s→ π* peak because both the carbon nanotube
pipette and PS absorb strongly at this energy, so that the total
absorption became too large when the X-rays passed through
more than one microsphere. Figures 8b to 8d presents the
chemical maps for the acrylate, PS, and carbon nanopipette
components derived from SVD analysis of one angle pro-
jection, using all energies except those at 285.0 and 285.5 eV
where the absorption saturation distortion occurs. Figure 8e
is a color composite of these three component maps.
The carbon nanopipette map was expected to show signal
from the exterior tube only. The acrylate should show a
larger density inside the microspheres, although it is
known that acrylate leaked from some of the hollow PS
particles in this particular sample (Johansson et al., 2007). If
so, as the water was lost, the acrylate dried on to the interior
of the PS shell particles or onto the interior of the carbon
nanopipette.

Figure 7. Effect of different choices of the β parameter for com-
pressed sensing total variation (CS-TV) tomographic reconstructions.
Slices through the xy (upper) and xz (middle) planes are shown for
reconstructions using (a,d) β = 0.01, (b,e) β = 0.1, and (c,f) β = 1.
g: Line intensity profiles through the indicated line on the xy slices.
h: Line intensity profiles through the indicated line on the xz slices.
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Figure 9 presents the 3D reconstructions of the acrylate
maps obtained using WBP, CS-TV, and SIRT for tilt angle
ranges of ±90°,±74°, and ±62°. The results from the±90° tilt
set showed hollow acrylate distributions inside the tube in the
xy slice and nomissing wedge artifacts in the xz slice (Figs. 9a,
9d, 9g). Using presently available STXM tilt-series data-
acquisition technology and standard processing techniques,
WBP and SIRT methods yielded reconstructions with
intensities with both negative and positive values. Such
artifacts represent a key limitation for analytical tomography
where intensity represents concentration, motivating the
development of alternative reconstruction techniques. In
contrast, using only the addition of the TV-minimization
constraint in CS, the reconstructions were significantly
improved, with physically interpretable intensities. When the
analysis was performed using reduced tilt angle ranges,
missing wedge artifacts appeared in the WBP, SIRT, and CS-
TV reconstructions, though the artifacts were much less
severe in the CS-TV reconstructions (Figs. 9g, 9h, 9i).
Figure 10 presents line intensity profiles along the missing
wedge direction for the WBP (Fig. 10a), SIRT (Fig. 10b), and
CS-TV (Fig. 10c) results for each of the three tilt angle ranges.
For WBP and SIRT reconstructions, the line profiles showed
significant broadening in the missing wedge direction as the
size of the missing wedge was increased (highlighted with
arrows in Figs. 10a and 10b). The intensity distributions in

line profiles from the ±90° and ±74° tilt sets reconstructed
using CS-TV were similar (Fig. 10c). For CS-TV reconstruc-
tions, effects of the missing wedge appeared as a slight
broadening of features only when the tilt angle range was
reduced to ±62°. Moreover, changes appeared in isolated
regions of the CS-TV reconstructions, whereas for SIRT
reconstructions all peaks were affected by the increased
missing wedge. Overall, CS-TV reconstructions maintained
data fidelity to a reasonable level, whereas WBP and SIRT
showed a significant reduction in reconstruction quality.
Supplementary Figure 5 presents WBP, SIRT, and CS
reconstructions of the images recorded at a single photon
energy (290 eV), in order to explore if the analysis in the
spectral domain, to generate component maps, had an effect.
When only a single energy is analysed, the clarity of the
reconstructions is improved for each method, but similar
results with respect to the relative quality of WBP, SIRT, and

Figure 8. a: C 1s spectra of the components of a sample consisting
of acrylate filled polystyrene microspheres inside a carbon nanopip-
ette. Quantitative two-dimensional projection components maps
(thicknesses in nm) of (b) acrylate, (c) polystyrene (PS) micro-
sphere shell, and (d) the carbon nanotube pipette. e: Color-coded
composite map showing acrylate in green, PS in blue, and the car-
bon nanotube pipette in red.

Figure 9. Evaluation of the effect of the size of the missing wedge
on simultaneous iterative reconstruction technique (SIRT) and
compressed sensing total variation (CS-TV) tomographic recon-
structions of the acrylate maps. Comparisons of (a–c) weighted
back-projection (WBP), (d–f) SIRT, and (g–i) CS-TV results for
three different tilt angle ranges: (a,d,g) ±90°, (b,e,h) ±74°, and
(c,f,i) ±62°. Slices through the xy (top) and xz (bottom) planes are
shown for each reconstruction.
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CS are obtained as for the reconstructions of the component
maps. Supplementary Figure 6 presents SIRT analyses with a
non-negativity constraint of the PS and carbon nanotubes
component maps, at three different tilt angle ranges (±90°,
±74°, ±62). As found for the Au dumbbell electron tomo-
graphy analysis, applying the non-negativity constraint does
improve the SIRT reconstructions and reduces its sensitivity
to changes in the tilt angle range analysed.

Supplementary Figures 5 and 6

Supplementary Figures 5 and 6 can be found online.
Please visit journals.cambridge.org/jid_MAM.

DISCUSSION

The demonstration of a CS-TV tomography algorithm for
STXM presented here outlines ways for improving the
quality of STXM tomography reconstructions and opens up
new possibilities for dose-rationing in STXM tilt series
spectro-tomography. The geometry of STXM optics means
that many samples impose an upper limit on the tilt range
accessible for tomography, introducing a missing wedge of
information, as in electron tomography. The CS-TV
approach applied to STXM tilt series data of a PEM-FC
model sample and a chemically complex microsphere
sample has shown significant benefits over conventional
WBP and SIRT methods for data sets with a missing wedge.

Furthermore, the CS-TV tomography approach has
been shown to be robust to substantial under-sampling by
increasing the angular increment in a tilt series. For STXM of
radiation-sensitive materials, this CS-TV approach makes
available several new acquisition strategies for minimizing
dose. For a given SNR in each tilt series projection, the total
dose may be reduced by acquiring fewer images at larger tilt
increment. Alternatively, for a fixed total dose, the SNR of
each individual projection may be increased by acquiring
fewer images, each for a longer time. Each of these approa-
ches may offer advantages for different samples, for imaging
at different ionization edges, or at different spatial resolu-
tions. Critically, enabling these techniques will allow 3D
chemical imaging of samples that cannot be imaged with
electron tomography, even with CS techniques, due to their
radiation sensitivity. Our model sample analyses demon-
strate the capability of CS-TV to produce high-fidelity
tomographic reconstructions using a very small number of
tilt angles. The feasibility of STXM tomography using limited
projection data is a critical and promising result for 3D
chemical imaging of the ionomer in PEM-FC cathodes, since
PFSA is highly radiation sensitive (Susac et al., 2013; Melo
et al., 2016) and excessive mass loss and ionomer redis-
tribution can occur when more than ~10 angles are mea-
sured. We anticipate that CS-TV methods will become
widespread and routine in STXM tomography, particularly
for radiation-sensitive materials such as the ionomer in
PEM-FC cathodes. Reliable mapping of PEM-FC cathodes,
and the corresponding quantitative reliability of 3Dmapping
of PFSA will be possible with 12–15 projections instead of
30–40 projections or more, as in more conventional
approaches to STXM tomography.

At its core, the CS-TV algorithm is widely adaptable to
many materials samples. The TV-norm requires the sample
to be composed of at least approximately homogeneous
chemical phases. This assumption is readily satisfied by
many chemistries where individual compounds are present
in separate sub-volumes. The CS-TV approach is, moreover,
often more flexible than other advanced tomographic
approaches like the discrete algebraic reconstruction tech-
nique (DART) (Batenburg & Sijbers, 2007). DART assumes
a known, finite number of gray levels in the reconstruction
volume. The CS-TV approach does not impose knowledge of

Figure 10. Line intensity profiles through selected xz planes from
(a) weighted back-projection (WBP), (b) simultaneous iterative recon-
struction technique (SIRT), and (c) compressed sensing total variation
(CS-TV) reconstructions corresponding to the three tilt angle ranges
indicated in Figure 9. The insets show the location of the selected lines.
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the number of different homogeneous phases. On the other
hand, samples containing continuous chemical gradients, for
example, may not be suitable for CS-TV STXM tomography
methods. In those cases the CS framework allows alternatives
to the TV-norm to be used for CS reconstructions. Identity
and wavelet transforms have been applied to cases in elec-
tron tomography (Saghi et al., 2011; Nicoletti et al., 2013)
and these sparsity transforms can be combined for improved
results (Leary et al., 2012; Saghi et al., 2016). Total general-
ized variation techniques (Al-Afeef et al., 2015a) and
dictionary-learning approaches (Al-Afeef et al., 2015b, 2016)
to CS tomography also present alternatives for dealing with
continuous intensity variations and other types of structure
in data. By applying transform domains that are appropriate
to the structure in the data, CS can be widely adapted to
different types of samples. Here, the CS-TV approach is
broadly applicable to many common sample types encoun-
tered in STXM.

The high chemical sensitivity of spectroscopic STXM,
well illustrated in the microsphere sample, represents
another key advance for 3D chemical imaging. The wealth of
chemical detail available in NEXAFS can now be recovered
for 3D micro- and nano-scale analysis using advanced
tomography techniques like the CS-TV algorithm. The many
STXM modalities, including developments in ptychographic
STXM imaging, will likely also benefit from combination
with CS-TV tomography methods.

SUMMARY

An implementation of the CS-TV algorithm for analysis of
STXM tomography data sets was presented, and its perfor-
mance was evaluated relative to WBP and SIRT analyses of
three different data sets. In each case, significant improve-
ments were demonstrated, especially for highly under-
sampled tilt series. The results show that CS-TV can be
used to derive high-fidelity 3D morphology even when
radically fewer projections are used. This approach provides
a method to improve the reliability of 3D mapping of iono-
mer in PEM-FC cathodes and many other radiation-
sensitive materials by using fewer projections and thus
decreasing radiation damage. CS-TV should also be applic-
able to ptychographic tomography (Holler et al., 2014) and
spectro-ptycho-tomography.
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