Beamline	Source	Optics	Energy Range	Energy	Flux(photon	End-station Capabilities
		-		Resolution	/sec)	-
SGM	BM	Spherical grating:	260 - 670 eV	10,000 at N K-	$\sim 10^{9} - 10^{10}$	Photoabsorption, of solids;
		600l/mm		edge (~400 eV)	for high to	photoabsorption and
		Funds available for 2		at slit settings of	modest	photoionization of gases
		additional gratings		10 µm x 10µm	resolution	
Grass-	BM	Three interchangeable	21 - 1000 eV	0.1 A	$\sim 10^{-10}$	Variable energy
hopper		gratings	21 - 200 eV (good			photoelectron of gases and
			resolution)	3,000 at 100 eV	~ 10 ⁹	solids, photabsorption and
						photoionization
DCM	BM	Double crystal InSb	1.8 - 4.3 keV	3,000 at Si K-	$\sim 10^{-10}$	Photoabsorption of gases
		and quartz	1.5- 1.85 keV	edge (~1840 eV)		and solids, soft x-ray
						scattering

Table A Present capabilities at CSRF (800 MeV, 2nd generation, modest emittance, 100 mA)

If you wish to explore possible synchrotron radiation projects, please contact the CSRF personnel (TK Sham (director), Kim Tan, and Yongfeng Hu) at the emails listed below.

BT project coordinator and scientific advisor: T.K Sham (UWO): sham@uwo.ca

BT manager: Emil Hallin (CLS), emil@cls.usask.ca

SGM beamline coordinator: Ian Coulthard (CLS), coulthar@cls.usask.ca; CSRF contact, Yongfeng Hu:hu@julian.uwo.ca

PGM beamline coordinator: Kim Tan (CSRF), ktan2@facstaff.wisc.edu; CLS contact, Jeff Cutler:jcutler@cls.usask.ca

DCM beamline coordinator: Emil Hallin (CLS), emil@cls.usask.ca

Optics specialist: Brian Yates (CLS), byates@cls.usask.ca

Endstation and industrial application specialists: Yongfeng Hu(CSRF), yhu@julian.uwo.ca; Jeff Cutler (CLS), jcutler@cls.usask.ca Crystal and x-ray optics consultant: De-tong Jiang (CLS): Jiang@cls.usask.ca